Dynamique d'un solide en rotation

Parent Category: Science et technologie Category: Science physique

Un solide est en mouvement de rotation lorsque ses différents points décrivent des trajectoires circulaires par rapport à un repère donné.


Notion de moment d'inertie

La position de centre d'inertie ne suffit pas pour déterminer les caractéristiques de mouvement d'un solide soumis à l'action des forces acquis sous l'action d'une impulsion extérieure dépend de la distribution des masses à l'intérieur du solide.
Pour tenir compte de l'influence de ce dernier critère dans le mouvement de rotation d'un solide on introduit une nouvelle caractéristique: le moment d'inertie.
Le mouvement d'inertie d'un système par rapport à un axe est par définition la somme du produit des parties ponctuels i par le carré de la distance de cette partie à l'axe.

 

19

Exercice d'application 1

Soit à déterminer le mouvement de deux points matériel de masse respective m1=4Kg et m2=7Kg situer à 6Cm et à 2Cm de l'axe respectivement.
J = m1R12 + m2R22 = 4(6x10-2)2 + 7(2x10-2)2
J = 1,75 x 10-2 Kgm2

 

Exercice d'application 2

Déterminer le moment d'inertie d'un pendule simple de longueur 15Cm et de masse 3Kg
J = ml2
J = 3(15x10-2)2
J = 6,75x10-4 Kgm2

Théorème de Huygens

Le moment d'inertie d'un système de masse M par rapport à un axe de rotation quelconque est égal à son moment d'inertie par rapport à son centre d'inertie parallèle D augmenté du produit de la masse du système par le carré de la distance qui sépare les deux axes.
JD = JG + M.d2

  • M en Kg
  • d en m
  • JD JG en Kgm2

Loi fondamentale de la dynamique

 
 

20
Soit à déterminer le moment d'inertie d'une circonférence de masse M de rayon R par rapport à un axe horizontal perpendiculaire au plan de la circonférence et passant par un point A de cette circonférence
JD = JG + Mr2 or JG = Mr2
JD = Mr2 + Mr2
JD = 2Mr2

Remarque:

Pour un cerceau au circonférence pesant de masse M de rayon R. Pour un cylindre creux de masse M et de rayon R. Pour une poulie de masse M repartie sur sa circonférence de rayon R. JG=M.R2

 
 

21
Pour un cylindre plan de masse M et de rayon R

 
 

22
Pour un disque plein de masse M et de rayon R

 
 

23
Pour un sphère pleine de rayon R de masse M

 
 

24