Courant alternatif triphasé

Index de l'article


Définition et représentation

Un système triphasé équilibré est un ensemble de 3 grandeurs de même dimension x1, x2, x3) tel que si
x1 = X1maxSin(ωt+Þ1)
x2 = X2maxSin(ωt+Þ2)
x3 = X3maxSin(ωt+Þ3)
on a:

  • X1max = X2max = X3max
  • x1, x2 et x3 régulièrement déphasés de 2IIm/3

Avec m=1 ou 2
On distingue deux types de système triphasé:

  • Le système équilibré direct:
    • x1(t) = X1maxSin(ωt-Þ)
    • x2(t) = X2maxSin(ωt-Þ-2π/3)
    • x3(t) = X3maxSin(ωt-Þ-4π/3)

Avec X1max = X2max = X3max = Xmax

  • Système triphasé équilibré indirect
    • x1(t) = X1maxSin(ωt-Þ)
    • x2(t) = X2maxSin(ωt-Þ+2II/3)
    • x3(t) = X3maxSin(ωt-Þ+4II/3)

Représentation

  • Les systèmes triphasés directs
21
  • Les systèmes triphasés indirects

22